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Abstract

Background: While Fetal Alcohol Spectrum Disorders (FASD) represent a significant public 

health problem, Native Americans are underrepresented in population and targeted screening 

programs. Prior reports suggest that Native American tribal communities may have higher 

prevalence of alcohol use during pregnancy; however, systematic examination using ethanol 

biomarkers is lacking.

Methods: This study utilized data collected through the Navajo Birth Cohort Study (NBCS) – a 

birth cohort study of a Southwestern tribal community. Prevalence of prenatal alcohol exposure 

(PAE) was assessed by a battery of meconium biomarkers among 333 NBCS participants. 

Meconium samples were analyzed for nine individual fatty acid ethyl ester (FAEE) species, ethyl 

glucuronide (EtG), and ethyl sulfate (EtS) by LC-MS/MS.

Results: Participants were recruited from 5 hospitals at the Navajo Nation located in Arizona 

(Chinle, Tséhootsooí, Tuba City) and New Mexico (Gallup, Shiprock). All participants identified 

as Native American; most reported personal income of <$20,000 per year (71.3%), and ≤high 
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school education (55.3%). The most prevalent biomarker was EtS (7.8%) followed by ethyl oleate 

(6.9%); 5.4% of the sample were positive for at least 2 biomarkers.

Conclusions: Results of this study on the prevalence of PAE in the Navajo Nation, obtained for 

the first time with an objective comprehensive panel of meconium biomarkers, indicate that the 

rates in the NBCS may be comparable to the general U.S. population and are in accord with recent 

U.S. national survey estimates. Our findings emphasize that drinking behaviors among Native 

American communities in the United States can vary, and generalization across all Native 

American populations is not warranted.
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INTRODUCTION

Alcohol consumption during pregnancy places a fetus at risk for fetal alcohol spectrum 

disorders (FASD), which entail lifelong physical and neurological impairments. Recent 

studies in the U.S. general population indicate that prenatal alcohol exposure (PAE) and 

FASD may be more prevalent than previously thought, with 10% of pregnant women self-

reporting alcohol use in the past 30 days (Tan et al., 2015) and as many as 1.1–5% of school-

aged children meeting criteria for FASD (May, Chambers, et al., 2018). Estimated 

prevalence of PAE varies widely according to surveillance method (May et al., 2009), and 

among different populations as affected by socioeconomic factors that influence drinking 

behaviors and access to preventive care (May et al., 2009; Roozen et al., 2016). Identifying 

high-risk populations is critical for providing appropriate interventions, and obtaining 

reliable prevalence estimates for specific sub-populations is a key step in this process.

Direct ethanol biomarkers in maternal blood, hair, urine, placenta, umbilical cord tissue and 

blood, meconium, and blood collected via newborn heel lancing have been previously 

examined for their utility in detecting PAE (Bakhireva & Savage, 2011; Joya et al., 2012; 

Montag, 2016). Meconium, an infant’s first stool, has been heralded for having the longest 

window of detection, providing ability to detect PAE incurred as far back as 20 weeks’ 

gestation or more. Additional advantages include non-invasiveness and the ability to identify 

moderate and episodic PAE. Over 20 compounds produced in response to PAE are 

detectable in meconium (Joya et al., 2012). Fatty acid ethyl esters (FAEE), which do not 

cross the placental barrier, accumulate in meconium as a result of ethanol metabolism by the 

fetus (Burd & Hofer, 2008). FAEE in meconium have demonstrated substantial sensitivity 

and specificity (Bearer et al., 2003) for heavy PAE, and are widely used in prevalence 

studies (Hastedt et al., 2013; Himes et al., 2015; Pichini et al., 2012). Bearer and co-authors 

reported that a positive test for meconium FAEE correctly identifies 72% of pregnant women 

who consume ≥1 drink per week during the third trimester (Bearer et al., 1999). The 

presence of FAEE in meconium is predictive of subsequent mental and psychomotor delays 

in children at 6.5 months, 1 year, and 2 years of age (Peterson et al., 2008), and poorer 

cognitive development at ages 9, 11, and 15 years (Min et al., 2015).
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In addition to FAEE, ethyl sulfate (EtS) and ethyl glucuronide (EtG) are considered highly 

reliable indicators of PAE (Himes et al., 2015). Some evidence suggests that EtS and EtG in 

meconium may be more stable than FAEE (Himes et al., 2014). Given that the risk of having 

an infant with cardinal features of fetal alcohol syndrome (FAS) is increased with a greater 

number of positive alcohol biomarkers (Stoler et al., 1998), meconium offers a non-invasive 

medium for testing multiple ethanol metabolites simultaneously. To our knowledge, only 4 

prior studies (Table I) have assessed meconium EtS, EtG, and FAEEs within the same study 

population.

We are not aware of any previous studies utilizing biomarkers to estimate prevalence of PAE 

specifically among Native Americans. Existing research has relied primarily on maternal 

self-report, records review, and FASD active case ascertainment (Duimstra et al., 1993; Fox 

et al., 2015; May et al., 2009). Findings from these studies have suggested that Native 

American tribal communities may represent a high-risk group. However, past studies 

concentrated in a few geographic regions (Alaska and the U.S. Northern Plains) (Iyasu et al., 

2002; Khan et al., 2013) may fail to represent heterogeneity of prenatal alcohol consumption 

behaviors among diverse people who identify as Native American. Moreover, analyses based 

on the National Survey on Drug Use and Health (NSDUH, 2005–2009, 2009–2013) have 

indicated that Native American adults, in general, are in fact more likely to abstain from 

alcohol than Whites or African Americans (Cunningham et al., 2016), and Native American 

pregnant women, in particular, are less likely to drink than pregnant women of other US 

racial/ethnic groups (Watt, 2012). The purpose of this study is to estimate PAE prevalence 

among newborns in the Navajo Nation, a region not studied in previous reports, using a 

comprehensive battery of ethanol biomarkers measured in meconium.

METHODS

Participants

This study utilized data collected through the ongoing Navajo Birth Cohort study (NBCS), 

which focuses on uranium exposure, birth outcomes, and development on the Navajo Nation 

(Hunter et al., 2015). The NBCS is a collaborative effort between the University of New 

Mexico (UNM), Centers for Disease Control and Prevention Agency for Toxic Substances 

and Disease Registry (CDC/ATSDR), Indian Health Services (IHS), Navajo Area IHS, the 

Southwest Research and Information Center, and the Navajo Nation Department of Health. 

For the parent study, pregnant women were recruited from all 110 chapters (political units 

equivalent to counties) of the Navajo Nation and followed-up through labor/delivery and 

postpartum. All study activities were reviewed and approved by the UNM, CDC, and Navajo 

Nation IRBs, as well as the U.S. Office of Management and Budget. The study design was 

informed and approved by community partners and leaders. All patients signed informed 

consent to participate. Minors were included, as 25% of births on Navajo Nation are in 

women <18 years of age. Minor consents were co-signed by a parent or guardian, with the 

minor re-consented if she reached maturity during the study. The consent had participants 

specifically check if they were willing to provide meconium for analysis of alcohol 

metabolites, since meconium has a cultural use; therefore, providing the sample was not 

mandatory for participation in the NBCS.
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The following inclusion criteria were used for pregnant women: a) age: 14–45, b) lived on 

Navajo Nation for at least five years at any time in their life, c) agreed to receive prenatal 

care and deliver at one of five participating IHS or PL638 hospitals (Chinle, AZ; 

Tséhootsooí, AZ; Gallup, NM; Shiprock, NM; Tuba City, AZ); and d) willing to have their 

child followed-up for biological sample collection and developmental assessment through 

the first year of life. The study was explained to women upon their initial presentation at a 

participating hospital for pregnancy confirmation. Those interested were told they could 

enroll at the hospital any time after pregnancy confirmation and before delivery. Average 

enrollment was at 23.3±10 gestational weeks.

Data collection

Meconium sampling and analysis occurred over a 3.5-year period between April 2013 and 

November 2016. During that timeframe, 638 cohort infants were born. Maternal consent for 

meconium collection was obtained from 570 (89.3%) participants. Among this 570, 361 

(63.3%) specimens were collected, and 333 (92.2% of collected samples) were analyzed for 

ethanol biomarkers. Nursery staff, trained by the study team, collected two quarter-sized 

aliquots of meconium which were placed in a sealed plastic container inserted within a 

brown paper bag to protect from light. Samples were placed in −80° C study-specific 

freezers at each participating collection site within 1–1.5 hours from collection (samples 

were stored at 4° C temperature before transfer to ultralow temperature freezers), batched, 

and shipped on dry ice to the University of Maryland for analyses.

Measures

At the University of Maryland, EtG, EtS, and FAEE samples were prepared and analyzed via 

LC-MS/MS using the previously described methodology (Himes et al., 2014). Briefly, EtG, 

EtS, and FAEEs were extracted from the same aliquot using a methanol-based liquid 

extraction followed by solid phase extraction using SLE+ cartridges for FAEE and Evolute-

AX cartridges for EtS/EtG (Biotage). EtG-d5 and EtS-d5 were used as internal standards in 

the EtG/EtS analyses, and E17:0 (non-natural FAEE) was used as the internal standard in the 

FAEE analyses to assess recovery. Average recoveries were as follows: EtS, 94%; EtG, 71%; 

FAEE, 57%. These recoveries are consistent with previous published work (Himes et al., 

2014).

EtG/EtS analysis: EtG and EtS were quantified by LC-MS/MS using the methodology 

described by Himes et al. (Himes et al., 2014), performed on a Dionex U3000 UPLC 

coupled to a Thermo TSQ triple quadrupole mass spectrometer using ESI operated in 

negative ion mode. Limits of detection (LOD, as defined by signal:noise >3) for EtS and 

EtG were both 1.0 ng/g. Limits of quantitation (LOQ, as defined by signal:noise > 10) for 

EtS and EtG were 3.0 ng/g and 5.0 ng/g, respectively.

FAEE analysis: FAEEs were quantified by LC-MS/MS using the methodology described 

by Himes et al. (Himes et al., 2014), performed on a Dionex U3000 UPLC coupled to a 

Thermo TSQ triple quadrupole mass spectrometer using ESI operated in positive ion mode. 

The LOD for FAEEs ranged from 10–25 ng/g and LOQ ranged from 15–50 ng/g. FAEE 

species that were quantified included: ethyl laurate (12:0) (LOD: 25 ng/g; LOQ 50 ng/g), 
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ethyl myristate (14:0) (LOD: 15 ng/g; LOQ 250 ng/g), ethyl palmitate (16:0) (LOD: 20 ng/g; 

LOQ 50 ng/g), ethyl palmitoleate (16:1) (LOD: 10 ng/g; LOQ 15 ng/g), ethyl stearate (18:0) 

(LOD: 20 ng/g; LOQ 50 ng/g), ethyl oleate (18:1) (LOD: 10 ng/g; LOQ 15 ng/g), ethyl 

linoleate (18:2) (LOD: 10 ng/g; LOQ 15 ng/g), ethyl linolenate (18:3) (LOD: 15 ng/g; LOQ 

25 ng/g), and ethyl arachidonate (20:4) (LOD: 10 ng/g; LOQ 15 ng/g).

Self-reported alcohol consumption 12 months before enrollment: The Alcohol 

Use Disorders Identification Test-Consumption (AUDIT-C) screening was administered at 

enrollment as a screening tool to capture ‘at risk’ drinking in the preceding 12 months 

(standard reporting timeframe); thus, capturing both pre-pregnancy and early pregnancy time 

periods. AUDIT-C data were available on 289 out of 333 subjects (86.8%) included in the 

meconium analyses. AUDIT-C was chosen based on feedback provided by tribal leaders, 

clinicians, and community advisors, who emphasized the need for a screening measure that 

minimizes concerns about possible stigma. AUDIT-C has been demonstrated to perform 

with approximately equal accuracy to the full 10-item AUDIT and with superior accuracy 

compared to other alcohol self-assessment tools (Burns et al., 2010). It has been used in 

research to screen pregnant women for risky alcohol use and demonstrated high accuracy 

(Lopez et al., 2017; May, Hasken, et al., 2018). More in-depth measures (e.g., Timeline 

Follow-Back interview) were deemed inappropriate for this population due to high 

sensitivity related to alcohol use in the community, and a reluctance of participants to 

discuss alcohol use observed in previous studies.

Analysis

Descriptive statistics were performed to estimate the prevalence of PAE based on each 

meconium biomarker and their combination. Given that the biomarker data were not 

normally distributed, range and median concentrations were reported (values below LOQ 

were not used in these calculations). Due to lack of agreement in the field on cutoff 

concentrations for meconium biomarkers (Himes et al., 2015; Joya et al., 2012), values 

above the LOQ were considered ‘positive’. For self-reported drinking, AUDIT-C score ≥3 

was used as a cutoff for ‘risky drinking’ (Reinert & Allen, 2007). Analyses were performed 

in SAS version 9.3 (Gary, NC).

RESULTS

Patient characteristics are summarized in Table II. Mean maternal age at recruitment was 

27.4± 6.0 years (range: 16.4–45.5 years). All participants identified as Native American. 

Most participants reported a personal (71.3%) and household (55.2%; data not shown) 

income of <$20,000 per year. The majority had ≤high school education (55.3%). While 

ceremonial tobacco use is prevalent in the tribal community (35.9% in this study), only 1 

participant (1.8%) reported regular tobacco use. This is consistent with the low rate of 

cigarette smoking among Navajo relative to Northern Plains tribes (Nez Henderson et al., 

2005).

Self-reported prevalence of ‘risky’ alcohol use (AUDIT-C ≥3) in the 12 months before 

enrollment was 12.5%. As shown in Table III, among meconium biomarkers, the highest 

concentration (median) was observed for ethyl palmitate (129.4 ng/g), laurate (93.3 ng/g), 
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and palmitoleate (47.6 ng/g). The most prevalent FAEE (% of participants with a 

concentration >LOQ) was ethyl oleate 23 (6.9%), followed by ethyl linoleate 17 (5.1%), 

ethyl palmitoleate 4 (1.2%); other ethyl esters were detectable in less than 1% of the sample 

(Table III). EtS and EtG were detected in 7.8% and 5.1% of the population, respectively.

The greatest overlap among individual biomarkers was observed between ethyl oleate and 

ethyl linoleate (11 subjects). Ethyl oleate also demonstrated some overlap with EtS (6 

subjects), ethyl palmitoleate (2 subjects), and ethyl arachidonate (2 subjects). Ethyl linoleate 

demonstrated overlap with EtS (4 subjects). As shown in Figure 1, there were no subjects 

positive for all 3 of the most prevalent ethanol biomarkers (ethyl oleate, EtG, and EtS). 

There was minimal overlap between positive AUDIT-C and biomarkers, possibly due to the 

different time frames they captured (data not shown). In total, 5.4% of the sample were 

positive for ≥2 biomarkers.

DISCUSSION

In this population-based study, 5.4 % of specimens were positive for ≥2 meconium 

biomarkers, highly indicative of regular PAE. By contrast, nearly 17% of a population-based 

cohort from the U.S. Northern Plains and Cape Town, South Africa tested positive for two 

meconium biomarkers (EtS and EtG) (Himes et al., 2015). Native American communities 

have traditionally been regarded as ‘high-risk’ for PAE and FASD. However, in a meta-

analysis of 8 population studies (not focused on Native Americans) from Canada, Germany, 

Italy, USA, Spain, and Uruguay, pooled prevalence of PAE as detected by FAEE in 

meconium was 18.9% (Lange et al., 2014) – much higher than observed in our study. In a 

cohort study which included a large proportion of Native American participants from the 

U.S. Northern Plains, PAE prevalence determined by a battery of meconium biomarker 

analyses ranged from 10.3% to 65.4% (Himes et al., 2015). In a German prospective cohort, 

7.1% and 16.3% of subjects were positive for FAEE (summed concentration of four 

individual ethyl esters) and EtG, respectively (Bakdash et al., 2010). Similar to our findings, 

combined positivity for two meconium biomarkers (EtG and FAEE) was 5.5% (Bakdash et 

al., 2010). Finally, in a cross-sectional study using another direct ethanol metabolite, 

phosphatidylethanol (PEth), in newborn dry blood spots collected at UNM hospital, 6.5% 

were positive, indicative of late-pregnancy PAE (Bakhireva et al., 2013). Thus, PAE 

prevalence observed in the general population of New Mexico per PEth analysis (Bakhireva 

et al., 2013) is comparable to the prevalence we observe in the Navajo Nation; it is 

additionally consistent with NSDUH (2005–2009) data indicating lower self-reported past 

30 day PAE rates among Native American women (8.7%) compared to White (12%) and 

African American (16.7%) women (Watt, 2012). Of note, the Navajo Area IHS has 

implemented a strong outreach program to increase awareness of the dangers of PAE, which 

may have additionally contributed to lower prevalence rates.

Our findings regarding ethyl oleate being the most prevalent FAEE and the one with the 

highest overlap with EtG/EtS are consistent with findings in the Cleveland cohort, where 

ethyl oleate was the best indicator of PAE (Bearer et al., 2003). The greatest overlap in our 

study was observed between ethyl oleate and ethyl linoleate, similar to the Himes et al. study 

(Himes et al., 2015). Somewhat surprising was the minimal overlap among EtG/EtS and 
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FAEE biomarkers; however, this is consistent with population-based studies in Spain and 

Italy (Morini et al., 2010; Pichini et al., 2012). While specific timeframe and magnitude of 

ethanol exposure cannot be determined from meconium biomarkers, Himes et al. found that 

EtG ≥ 30 ng/g had a moderate to substantial agreement with self-reported PAE at ≥19 weeks 

with a dose-response relationship for drinks per drinking day (DPDD), but not timing of 

consumption. In these studies, the odds of observing a positive EtG result (≥30 ng/g) was 9.1 

times higher for women self-reporting DPDD between >0 and ≤3 DPDD than women 

reporting no drinking. The odds of observing a positive EtG of ≥30 ng/g increased to 22.6 

for DPDD between >3 and ≤10 and increased to 29.4 when DPDD was ≤10 (Himes et al., 

2015). Other studies suggested that a relationship between PAE and meconium FAEE is not 

linear with a potential threshhold at 3 drinks/week, corresponding to light/moderate alcohol 

consumption (Yang et al., 2015).

One limitation of this study is its lack of the Timeline Follow-back (TLFB) in-depth 

interview, or other similar methods, for obtaining more detailed self-reported PAE 

information spanning the full gestational period. For the parent study, implementation of the 

TLFB was deemed inappropriate by community advisors due to concerns about alcohol-

related stigmas in the tribal community and a related reluctance to discuss alcohol use 

observed in previous studies. Thus, AUDIT-C was selected as this method covers the 12-

months before enrollment, including pre-pregnancy. Pre-pregnancy drinking is likely 

perceived as less stigmatizing than gestational drinking, and has a demonstrated ability to 

predict risky drinking continuing into pregnancy (Anderson et al., 2014; Eichler et al., 

2016). However, with the average enrollment at 23.3 weeks gestation, AUDIT-C captured an 

average window of 5 months before pregnancy in our study, thus direct comparison with 

ethanol biomarkers is not warranted. Many women with risky drinking behaviors pre-

pregnancy may stop drinking upon pregnancy recognition (Handmaker et al., 2006; Pryor et 

al., 2017; Schmidt et al., 2017).

Another possible limitation is that meconium analyses were conducted on 52.2% of cohort 

births. Notably, 89.3% of participants gave consent for meconium analysis (participation 

rate), which was higher than in other studies (Zelner et al., 2012). Less than 100% sample 

collection (361 out of 570 consented or 63.3%) is expected given the recognized challenges 

associated with strained resources within medically underserved and rural hospitals 

(Genovesi, Hastings, Edgerton & Olson, 2014) which are further strained in neonatal units 

managing birthing complications and competing medical test needs, as noted by others 

(Vaught & Henderson, 2011). Of note, 28 meconium samples were collected but not 

analyzed due to limited funding. To ascertain the effect of potential selection bias on results, 

we compared prevalence of self-reported risky drinking (AUDIT-C ≥3) among 453 out of 

570 meconium-consenting subjects who delivered during the meconium collection period 

and had complete AUDIT-C scores. This N included the subset reported in this paper, but is 

fewer than the 570 consenting mothers due to missing AUDIT-C scores. Among those 453 

subjects, 312 had meconium samples collected and 141 did not. Prevalence of risky drinking 

was similar between these two subgroups (15.7% vs 17.0%; p = 0.72). Additionally, AUDIT-

C ≥3 rates were similar among subjects who consented for meconium vs. those who did not 

(16.1% vs. 10.9%, respectively; p=0.31). These analyses demonstrate that selection biases 

are unlikely to have affected our prevalence estimates obtained from meconium testing.
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Finally, generalizability of our findings might be limited, since this study included only 

Native American individuals. While a question with respect to difference in alcohol 

metabolic pathways between Native American and Caucasian populations has been raised 

(Ehlers, 2007), it appears we can expect to observe an effect size comparable to that 

observed in prior studies in Caucasian populations for FAEE, EtG, and EtS. These 

biomarkers are produced through nonoxidative metabolism of alcohol, distinctly different 

from the oxidative pathway involving alcohol dehydrogenase (ADH) and aldehyde 

dehydrogenase (ALDH). To our knowledge, observed genetic variations in alcohol 

metabolism have all been linked to the latter oxidative pathways, specifically to variants of 

ADH, ALDH, and CYP2E1 (Zakhari, 2006). In some Native American populations, roughly 

6% have been shown to have an ADH1B*3 allele that leads to more rapid metabolism than 

the more common ADH1B polymorphisms (Wall et al., 2003). However, ADH and ALDH 

phenotypes among Native Americans in New Mexico were actually found to be very similar 

to Caucasian populations (Rex et al., 1985). As all of these known polymorphisms are in the 

oxidative pathway, and even if present in a small proportion of the study population, they 

would not affect the target biomarkers.

Our findings suggest that PAE prevalence in the Navajo Nation is at least comparable to 

rates in the general population and consistent with national self-reported PAE rates among 

Native Americans (Watt, 2012). The highest prevalence for a single biomarker (EtS) in the 

current study was 7.8%, and 5.4 % of specimens were positive for ≥2 biomarkers. This 

finding contrasts with widely-held perceptions of Native Americans as ‘high-risk’ for 

alcohol-related problems. Our research in the Navajo Nation, which is the first that we know 

of to present alcohol biomarker prevalence data in an all-Native American pregnancy cohort, 

highlights the heterogeneity of Native American communities. Although prior studies 

among other Native American groups found higher rates of self-reported drinking and FASD 

(Duimstra et al., 1993; Fox et al., 2015; Khan et al., 2013; May et al., 2009), our findings 

emphasize that drinking behaviors among Native American populations in the country can 

vary dramatically. Emerging research on urban and rural Native American veterans 

(Westermeyer et al., 2009) found lower rates of alcohol-related illness among women 

compared to men, while a study of high school students found widely similar drinking levels 

and behaviors between White and Cherokee Nation women (Komro et al., 2016). 

Generalization across all Native American populations is not warranted, and emerging data, 

expanded upon by our own findings, refutes long-held stereotypes about increased alcohol 

use among Native Americans (Cunningham et al., 2016).

The lower prevalence might also demonstrate success from the Navajo Nation’s efforts to 

reduce alcohol-related risks in the community. Navajo Nation IHS clinicians in many service 

units where participants received care reported initiation of a strong campaign in recent 

years to educate patients on the risks of alcohol consumption during pregnancy, which may 

be contributing to the lower rates of consumption observed in this study, and further 

highlights the importance of such efforts. While the effectiveness of this campaign could not 

be directly evaluated, and we have insufficient data to assess change in consumption over 

time, evaluations of targeted intervention programs in tribal communities are emerging 

(Hanson et al., 2017; Montag et al., 2015) and should be the focus of future efforts. It is 

worth noting that the effectiveness of these interventions has not always proven to be an 
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improvement over standard care (Montag et al., 2015). Working with clinicians adopting 

educational and other interventions to track resulting changes would help in evaluating 

effectiveness and identifying how factors such as prenatal care compliance influence 

outcomes. Such data could inform future preventive efforts incorporating holistic 

community-based participatory approaches to address multiple reproductive health 

challenges in Native communities.
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Figure 1. 
Overlap between the Most Prevalent Biomarkers

*Total prevalence for each biomarker shown is the sum of all numbers within each of the 

corresponding circles of the diagram (e.g., total number of subjects positive for EtS is 26: 

19+6+0+1)
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Table II:

Description of the study population (n=333*)

Patient Characteristics Mean + SD

Maternal age (years) 27.4 ± 6.0

Gestational age at recruitment (weeks) 23.3 ± 10.0

Gestational age at delivery (weeks) 38.7 + 1.8

Birth weight (g) 3,356 + 541

Birth length (cm) 50.2 + 2.8

APGAR score – 1 min 8.3 + 1.0

APGAR score – 5 min 9.1 + 0.6

Marital status: N (%)

 Married/cohabitating 253 (83.5)

 Separated/divorced 23 (7.6)

 Single 27 (8.9)

Maternal education:

 Less than high school grad 68 (22.4)

 High school grad/GED 100 (32.9)

 Some college/vocational or higher 136 (40.8)

Annual income:

 Less than $19,999 214 (71.3)

 $20,000-$39,999 30 (10.0)

 ≥ $40,000 10 (3.3)

 Do not know/Refused to answer 46 (13.8)

Gravidity (primigravida) 78 (25.6)

Parity (nulliparous) 90 (29.7)

Tobacco use:

 Regular use 1 (1.8)

 Ceremonial purposes only 120 (35.9)

Placement of an infant in NICU 3 (0.92)

*
Sample size may vary due to pairwise deletion of missing data
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Table III:

Distribution and Prevalence of Positive Meconium Biomarkers in the Study Population (n=333)

Measures of PAE Median (ng/g) Range (ng/g) Prevalence (>LOQ)N (%)

Fatty acid ethyl esters (FAEEs):

 Ethyl laurate E12:0 93.9 0.0–93.9 1 (0.3)

 Ethyl myristate E14:0 0.0 0.0–0.0 0 (0.0)

 Ethyl palmitate E16:0 129.4 78.8–180 2 (0.6)

 Ethyl palmitoleate E16:1 47.6 20.2–197 4 (1.2)

 Ethyl stearate E18:0 0.0 0.0–0.0 0 (0.0)

 Ethyl oleate E18:1 30.4 16.2–325 23 (6.9)

 Ethyl linoleate E18:2 47.1 17.9–168 17 (5.1)

 Ethyl linolenate E18:3 49 30.9–67.1 2 (0.6)

 Ethyl arachidonate E20:4 15.8 15.4–35.2 3 (0.9)

Ethyl glucuronide (EtG) 30.8 9.4–3440.2 17 (5.1)

Ethyl sulfate (EtS) 7.8 3.1–37.7 26 (7.8)

Positive for ≥ 2 biomarkers -- -- 18 (5.4)
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